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Measurements from ULYSSES"

1.1 SCOPE OF THE INVESTIGATION

Ion charge states measured in situ in interplanetary space carry information on the properties

of the solar wind plasma in the inner corona. This information is, however, not easy to extract

from the in situ observations. The goal of the proposal was to determine solar wind models and

coronal observations that are necessary tools for the interpretation of charge state observations. It

has been shown that the interpretation of the in situ ion fractions are heavily dependent on the

assumptions about conditions in the inner corona.

1.2 PROGRESS MADE DURING PERIOD 10/1/97 - 9/30/98

There are three fields important to the interpretation of minor ion charge state measurements

that we have concentrated on during this time interval. These are 1. Modeling of the charge state

ratios of a number of ions commonly measured in situ, 2. Modeling of minor ion outflow properties,

and 3. Measurements of the properties of minor ions and the background solar wind in the inner

corona.

1. The interpretation of charge state observations in interplanetary space is only possible in

the context of models since the ion ratios are extremely sensitive functions of the electron density,

electron temperature and minor ion outflow speeds. In past studies it has always been assumed

that the minor ion outflow speeds in the inner corona are of the order of a few km s-1 or even less.

Following the results derived from recent UVCS coronal measurements, we have investigated the

effect of high minor ion outflow speeds on the interpretation of in situ charge state measurements.

Assuming Maxwellian velocity distribution we have shown that in the presence of high minor ion

outflow speeds, like the ones derived from the UVCS observations for 0 +5, electron temperatures in

the inner corona have to be significantly higher than previously assumed. As a matter of fact, most

likely higher than electron temperatures derived from line ratios observed in the inner corona with

the SUMER instrument. If both, the electron temperatures are low in the inner corona, and the ion

flow speeds are high, then the velocity distributions of the electrons have to deviate significantly

from Maxwellian distribution functions in order to produce the charge states of the ions commonly

observed in situ in the high speed solar wind (Esser et al. 1997). Figure lb shows an example of

how the formation temperature of the ions changes as a function of flow speed. This example was

calculated to support the interpretation of Fe line intensity measurements carried out in the inner

corona at the positions shown in Figure la.

2. Using a three fluid model of the solar wind we have continued to investigated the flow

properties of heavy ions in the solar wind. It was found that by choosing appropriated heating

functions for all the particles (electrons, protons and minor ions) solutions where the minor ions

flow an Alfv_n speed faster than the protons in interplanetary space can easily be achieved. In

these type of solutions the minor ions have a tendency to be faster than the protons already very



closeto the sun,in agreementwith therecentUVCSobserva5ons. The distance where the protons

are overtaken by the ions is typically at 2 Rs, a distance that could still be below the freezing in

distance for the different charge states and therefore affect th _ formation of these charge states (see

above) (e.g. Li et al. 1997).

3. Ion charge state formation in the inner corona depends on the electron density, in addition to

the dependence on the electron temperature and ion flow speed. As a matter of fact, the density

dependence is quite crucial in the charge state formation. We have therefore investigated limits

on the electron densities in the very inner corona, below 2 Rs above the limb, which is the region

important for the charge state formation. This is also th_ region where the electron densities

which are commonly derived from polarization brightness measurements, are least accurate due to

scattering from the solar disk. This is the reason why the spread of coronal hole densities derived

from observations below 1.5 Rs is much larger than the spread in the observed values above that

distance (see Figure 2a). Daily observations inside a coronai hole are shown in Figure 2b. These

observations also show a large density variations in the inner corona, which are most likely caused

by line-of-sight effects. We conducted a parameter study o! electron densities in the lower solar

atmosphere using a wide range of different atmospheric models. These models are constraint by

spectral line observations and give as a function of height electron temperatures and densities.

Comparing these electron densities with the observed coronal densities we noticed that regardless

of the atmospheric models used, the electron densities derived from the atmospheric models will

result in electron densities in the corona about one oreder of magnitude lower than observed electron

densities in the corona. Studying line of sight effects in the corona over long periods of time, we

concluded that the coronal electron densities are significantly biased by line of sight contribution

from closed loop structures. These structures contribute mainly below 1.5 Rs, precisely in the

region which is important for the formation of the charge ::tates. Recent line ratio diagnostics

from SUMER and CDS which make use of cooler lines, more :'elevant for coronal hole plasmas give

electron densities almost one order of magnitude lower than the ones previously derived, or derived

from higher temperature lines. We are presently studying by how much these lower densities would

effect the charge state formation (Esser and Sasselov 1999).

In addition we have continued to study minor ions in the inner corona using UVCS. UVCS is

presently the only instrument that can give minor ion informat ion in the region above 2 Rs, a region

which for many ions is still important for their formation, h_e have carried out a long series of

observations to place limits on the properties of Mg X which i,_one of the ions that is observed with

the SWICS instrument on ULYSSES. These observations re/eal that these ions are significantly

hotter than the protons, even though slightly cooler than sh_ O VI ions. Since the pressure force

plays an important role in the acceleration of the ions, the fac: that the Mg ions are like the O ions

significantly hotter than the protons indicates that these ior s also flow fast in the inner corona.

We are presently using that information to study the formati _n of the Mg X in a more consistent

manner (Esser et al. 1999; Kohl and Esser et al. 1999). Figt res 3 summarize the results of these

studies.
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Figure 1 • (a) Soft X-ray YOttKOII image together with the position of coordinated spectral line measuremem,s carried

out at r.he National Solar Observatory a£ Sacramento Peak. (b) Increase of the peak temperaI, ure of formation wil, h flow speed.
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Figure 2 : (a) Coro_ml electron densities derived from a number of different space and g,omM based

observatiot_s. Note that the discrepancy between the coronal hole densities in the reg, ion 2 t,) 3 li'. ' is

relatively small (a factor of 2 to 4). whereas the discrepancy in the re_. ion below 1.5 R... hlure:.ts('s Io _t ['aulor

of 20. with the highest coronal hole densities approaching streamer (ensities. (b) I)aily M;tUll;t l.oat whir(,

light iutensity illea.sllrenlents carried out at 1.16 R.- as a function of )osition ;ulRle. flOl_).._[arch 12 to May

1.9 1993 which is the time period surrounding, the SPARTAN I)B )n(,a ;ureln(mts ()t .-\l)ril 12 in (a). N,)I(' )h('

larg(, daily d,,_sitT," variations ill both SOtlt, h(!I'll :-tlId nortlmrn c()loll_-tl ]_)l(_s.
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Figure 3: (a) Flow speeds derived from the assumption of mass flux conservation and the Fisher and GuhathaJ(urta (1995)

coronal electron densities (Figure la) and a proton flux of 1.6 to 2.2 xl0Scm-2s -1 (e.g. Phillips et al. 1995). The flow speeds

and densities, together with the assumption of magnetic flux conservation are used to place limits on the Alfv6n speed. (b) Limits

on the Alfv6n wave amplitude (dashed lines) derived from the kinetic ion temperatures in (c) and WKB approximation. _VKB

approximation is also used to calculate corresponding SUMER values (Tu and Mmrsch 1998) (dotted line). It is usually assumed

that Alfv6n waves do not damp if 6v/rA << 1, which is clearly the case for the distances shown in the figure. (c) UVCS line

widths for three different spectral lines (see text), supplemented for Mg X with observations from Hassler et al. (1990). (d)

Thermal contribution to the line broadening calculated from (c) and (h). (e) Equipartition times for energy exch;,nge between

protons and heavy ions, and proton and electrons, calculated from the densities and temperatures above. Limits on the solar

wind expansion times are also shown (dashed lines). (f) Oxygen ion fraction calculated for the same electron densities used in

(a), and ion outflow speeds close to the ones in Figure 2d, compared to the observed ULYSSES values (see Esser et &l. 1998a for

details).
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